

35 ème journée d'Actualités Médicales Arrageoises

SAMEDI 21 janvier 2023

https://fmcarras.fr

QUELQUES MESSAGES CLEFS

Programme

08h30 : accueil des participants 09h00 : mot d'accueil de la présidente

09h10 : Urologie - Dr Grégory BOZZINI

09h40 : Gynécologie - Dr Charlène MASSIN

10h10 : Dermatologie - *Dr Freddy LENGRAND*

10h40 : Assemblée Générale de l'association de FMC

11h00 : Pause salée

12h30 : Gastro-entérologie - Dr Alexis BOUTHORS 13h00 : Radiologie - Dr Mélody AMOUYEL-CASTIER 13h30 : Séquence passion - François JONQUET

14h00 : Pause sucrée

15h00 : Cardiologie - *Dr Bruno VAQUETTE* 15h30 : Otorhinolaryngologie - Dr Vincent LOCHE **16h00 :** Endocrinologie - *Dr Bernard HENRIC*

Bonne journée !

Dr Bruno VAQUETTE

dr.bvaquette@gmail.com

35 ème journée d'Actualités Médicales Arrageoises

SAMEDI 21 janvier 2023

https://fmcarras.fr

QUELQUES MESSAGES CLEFS

Programme

08h30 : accueil des participants 09h00 : mot d'accueil de la présidente

09h10 : Urologie - Dr Grégory BOZZINI

09h40 : Gynécologie - Dr Charlène MASSIN

10h10 : Dermatologie - Dr Freddy LENGRAND

10h40 : Assemblée Générale de l'association de FMC

11h00 : Pause salée

12h30 : Gastro-entérologie - Dr Alexis BOUTHORS 13h00 : Radiologie - Dr Mélody AMOUYEL-CASTIER 13h30 : Séquence passion - François JONQUET

14h00 : Pause sucrée

15h00 : Cardiologie - *Dr Bruno VAQUETTE* 15h30 : Otorhinolaryngologie - Dr Vincent LOCHE **16h00 :** Endocrinologie - *Dr Bernard HENRIC*

Bonne journée !

Les 4 fantastiques o ACD 0 1% Intervention of the second o 31 Ill (1,87 verres d'alcool/j)

lce cardiaque à FE réduite - Recos 2021

lee cardiaque à FE réduite - Recos 2021

Management of patients with HFrEF

- ACE-i/ARNI^a
- Beta-blocker
- MRA
- Dapagliflozin/Empagliflozin
- Loop diuretic for fluid retention
 - (Class I)

If symptoms persist, consider therapies with Class II recommendations

ļ

liflozin id retention

lce cardiaque à FE réduite - Recos 2021

Il faut envisager l'administration de dose unique de fer-carboxymaltose (500-1000 mg de fer) pour corriger la carence en fer*

Calcul des besoins totaux en fer à	à l'aide du tableau :
------------------------------------	-----------------------

Hémo	globine		atient	
g/dL	mmol/L	mmol/L < 35 kg 35 kg to < 70 kg		≥ 70 kg
< 10	< 6.2	500 mg	1500 mg	2000 mg
10 à < 14	6,2 à < 8,7	500 mg	1000 mg	1500 mg
≥ 14à 15	≥ 8,7 à 9,3	500 mg	500 mg	500 mg

ETAPE 4

Contrôler la ferritine + CST

Lors de la prochaine visite programmée (de préférence après 3 mois)

ETAPE 5

Contrôler la ferritine + CST

1-2 fois par an ou si changement du profil clinique ou si l'hémoglobine diminue

HTA en 2022

6

AGU ACE/AAII 0 Calcium bloqueur 0 Divrétique 0

Bithérapie en association fixe

Auto-mesure tensionnelle

F A C T

Dr Michel de Lorgeril

L'HORRIBLE Vérité sur les Médicaments Anticholestér

1 mmol/l (-0.4 g/l) lDL-c

25% IPM et AVC NNT= 50 (prévention II) NNT= 25 (prevention I)

> 1 diabète \uparrow myosite \uparrow AVC (h)

douleur, sensibilité, faiblesse, crampe + ↑ CPK >4N 1/10.000/an mécanisme ? liée à la dose liée au taux sanguin de statine

Myosite

<u>Myalgie</u> 10-20/10.000/an (0.1%)

(W)

Effect of statin therapy on muscle symptoms: an individual participant data meta-analysis of large-scale, randomised, double-blind trials

0

Cholesterol Treatment Trialists' Collaboration*

Prévalence symptômes musculaires :

(11 événements pour 1000 années-personne)

vs 5 à 20% dans les séries

Survenue dans la Iere année de traitement 0

Side Effect Patterns in a Crossover Trial of Statin, Placebo, and No Treatment

James P. Howard, PhD,^{a,*} Frances A. Wood, MPhil,^{a,*} Judith A. Finegold, PhD,^a Alexandra N. Nowbar, MBBS,^a David M. Thompson, PHD,^a Ahran D. Arnold, MBBS,^a Christopher A. Rajkumar, MBBS,^a Susan Connolly, PHD,^a Jaimini Cegla, PhD,^b Chris Stride, PhD,^c Peter Sever, PhD,^a Christine Norton, PhD,^d Simon A.M. Thom, MD,^a Matthew J. Shun-Shin, PHD,^a Darrel P. Francis, MA^a

Fausse intolérance !

- comorbidités : hypoK+, hypothyroïdie, âge
- interactions
 - myotoxiques: colchicine, corticothérapie, fibrate / inhibiteur enzymatique
 - Alcool
- (race asiatique)
- Vraie intolérance !

 - (Vitamine P, Co-enzyme Q10)
- o Foie
 - ASAT>ALAT > 3N (arrêt/suivi...): à gérer comme les CPK

Symptôme musculaire nouveau ou inexpliqué Localisation Symétrique, hanche ou cuisse Symétrique, mollet Symétrique muscles proximaux Asymétrique, intermittent Survenue dans le temps Moins de 4 semaines après traitement 4 à 12 semaines après traitement Plus de 12 semaines après traitement Arrêt du traitement Amélioration dans les 2 semaines Amélioration dans les 2-4 semaines Pas d'amélioration **Reprise du traitement** Mêmes symptômes dans les 4 semaines Mêmes symptômes dans les 4-12 semaines Calcul du score **Probable**

Possible

Improbable

Risque cardio-vasculaire (RCV) « Rien n'est plus difficile à prédire que l'avenir » SCORE2-OP

Score Score2 et Score2-0p! RCV & stéatose hépatique: + 45% hauf RGV: LDL-c < 0.7 </p>

	Women						
	1	Non-si	mokin	g		Sn	
160-179	28	29	30	31	31	32	
140-159	26	27	28	29	29	30	
ີຄ 120-139	24	25	26	27	27	28	
I 100-119	23	24	25	26	25	26	
E 160-179	20	21	22	23	25	26	
u 140-159	18	19	20	21	23	24	
120-139	16	17	18	19	20	21	
ຍີ່ 100-119	15	15	16	17	18	19	
a 160-179	15	15	16	17	21	22	
0 140-159	13	13	14	15	18	19	
G 120-139	11	11	12	13	15	16	
. <mark>⊖</mark> 100-119	9	10	10	11	13	14	
160-179	10	11	12	12	17	18	
ຈີ 140-159	9	9	10	10	14	15	
120-139	7	7	8	8	11	12	
100-119	6	6	6	7	9	10	
	3.0-	4.0-	5.0-	6.0-	3.0-	4.0	
	3.9	4.9	5.9	6.9	3.9	4.9	
					Non-H	HDL	

		21	.570	J		
				М	en	
Age [1	Non-si	mokin	g		Sm
	29	35	42	49	29	35
05 00	28	33	40	47	27	33
82 - 89	26	32	38	45	26	32
	25	30	36	43	25	30
	23	27	32	37	26	31
00 04	21	25	29	34	24	28
80 - 84	19	22	26	31	22	25
	17	20	24	28	19	23
	19	21	24	27	24	27
75 70	16	18	21	23	21	23
/5 - /9	14	15	18	20	18	20
	12	13	15	17	15	17
	15	16	18	19	22	24
70 74	12	13	14	16	18	19
/0-/4	10	11	12	13	14	16
	8	8	9	10	12	13
	3.0-	4.0-	5.0-	6.0-	3.0-	4.0-
20030310	3.9	4.9	5.9	6.9	3.9	4.9
nmol/L)					19	50 3

≥70 years <7.5%

7.5 to <15%

SCOPE

				SUC	INC2						<50	years	50-6	9 year
		10-ye	ear ris	k of (fa	atal ar	nd nor	n-fata	I)]		<	2.5%	<	:5%
		С	V eve	ents in	popula	ations	at				2.5 to	<7.5%	5 to	<10%
				low C	VD ris	k					≥.	7.5%	≥	10%
										_				
				Wo	men								N	len
		Non-s	moki	ng		Sm	oking		Age		Non-s	mokin	g	
160-179	8	8	9	9	12	12	13	13		11	12	12	13	1
140-159	7	7	7	7	10	10	11	11	CF . CO	9	10	11	11	13
120-139	5	6	6	6	8	9	9	9	65 - 69	8	8	9	10	11
100-119	5	5	5	5	7	7	7	8		6	7	7	8	9
160-179	6	6	7	7	10	10	11	11		8	9	10	11	13
140-159	5	5	5	6	8	8	9	9	60 64	7	8	8	9	10
120-139	4	4	4	5	6	7	7	8	60 - 64	6	6	7	8	9
100-119	3	3	4	4	5	6	6	6		5	5	6	6	7
160-179	4	5	5	5	8	8	9	10		7	7	8	9	10
140-159	3	4	4	4	6	7	7	8	FF F0	5	6	7	8	9
120-139	3	3	3	3	5	5	6	6	22 - 28	4	5	5	6	7
100-119	2	2	3	3	4	4	5	5		4	4	4	5	6
160-179	3	4	4	4	6	7	7	8		5	6	7	8	9
140-159	3	3	3	3	5	5	6	6	50 54	4	5	5	6	7
120-139	2	2	2	3	4	4	5	5	50 - 54	3	4	4	5	6
100-119	2	2	2	2	3	3	4	4		3	3	3	4	4
160-179	2	3	3	3	5	5	6	7		4	5	6	6	7
140-159	2	2	2	3	4	4	5	5	45 40	3	4	4	5	6
120-139	1	2	2	2	3	3	4	4	45 - 49	2	3	3	4	4
100-119	1	1	1	1	2	2	3	3		2	2	3	3	3
160-179	2	2	2	3	4	4	5	6		3	4	5	5	6
140-159	1	2	2	2	3	3	4	4	40 44	2	3	3	4	5
120-139	1	1	1	1	2	3	3	3	40 - 44	2	2	3	3	3
100-119	1	1	1	1	2	2	2	2		1	2	2	2	3
	3.0-	4.0-	5.0-	6.0-	3.0-	4.0-	5.0-	6.0-		3.0-	4.0-	5.0-	6.0-	3.0
	3.9	4.9	5.9	6.9	3.9	4.9	5.9	6.9		3.9	4.9	5.9	6.9	3.9

Non-HDL cholesterol (mmol/L)

imoking						
16	17	19				
14	15	16				
12	13	13				
10	11	11				
14	15	17				
11	13	14				
10	10	11				
8	9	10				
12	13	15				
10	11	12				
8	9	10				
6	7	8				
10	11	13				
8	9	10				
6	7	8				
5	6	7				
8	10	11				
7	8	9				
5	6	7				
4	5	5				
7	8	10				
5	6	8				
4	5	6				
3	4	5				
0-	5.0-	6.0-				
9	5.9	6.9				
200 250						

3.0- 4

3.9 4

150

quantification des calcifications coronaires (CC) épicardiques

CC = <u>marqueur</u> de la maladie coronaire infraclinique et de sa sévérité [Blackenhorn - 1959, Beadenkopf - 1964]

CC = <u>facteur prédictif</u> d'événements cérébro-cardio-vasculaires [Arad - 1996]

reflet de la quantité d'athérome coronaire et notamment de plaques instables

ESC European Heart Journal (2018) **0**, 1–10 European Society doi:10.1093/eurheartj/ehy217 of Cardiology

CLINICAL RESEARCH Prevention and epidemiology

Ten-year association of coronary artery calcium with atherosclerotic cardiovascular disease (ASCVD) events: the multi-ethnic study of atherosclerosis (MESA)

Matthew J. Budoff¹*, Rebekah Young², Gregory Burke³, J. Jeffrey Carr⁴, Robert C. Detrano⁵, Aaron R. Folsom⁶, Richard Kronmal², Joao A.C. Lima⁷, Kiang J. Liu⁸, Robyn L. McClelland², Erin Michos⁷, Wendy S. Post⁷, Steven Shea⁹, Karol E. Watson¹⁰, and Nathan D. Wong⁵

TOM sans injection synchronisé à l'ECG

> 10-15" apnée 26,04 €

< 1 mSv (~mammographie) [TDMc=4, coro=9, scinti=15]

CC = plaque ≥ 4 pixels contigus (aire=1.37 mm²) avec une densité ≥130 UH Quantification CC basée sur la méthode d'Agatston [JACC 1990]: surface de la CC x densité de la plaque

Score calcique

CC = plaque ≥ 4 pixels contigus (aire=1.37 mm²) avec une densité ≥130 UH Quantification CC basée sur la méthode d'Agatston [JACC 1990]: surface de la CC x densité de la plaque

Score calcique

Lésions	Volume / mm ^a	Masse équiv. / mg	Quantificatio
1	51,1	11,34	61,2
3	386,7	113,57	492,7
1	2,5	0,46	2,1
0	0,0	0,30	0,0
5	440,3	125,37	555,
0	0,0	0,30	0,0
0	0,0	0,00	0,0

Type de quantification: Défiri par l'utilisateur, Seuil: 130 HU (102,7 mg/cm³ CaHA) Facteur de calibration de masse: 0,79

Quelles indications?

Patient asymptomatique +++, à partir de 45-50 ans Patient intolérant aux statines Risque intermédiaire Diabète de type 2 asymptomatique Patient in observant

ETT & ETO -30

ETT & ETO -30

Fermeture auricule gauche

ETT & ETO -30

Population-level risks of alcohol consumption by amount, geography, age, sex, and year: a systematic analysis for the **Global Burden of Disease Study 2020**

GBD 2020 Alcohol Collaborators*

Summary

Background The health risks associated with moderate alcohol consumption continue to be debated. Small amounts of alcohol might lower the risk of some health outcomes but increase the risk of others, suggesting that the overall risk depends, in part, on background disease rates, which vary by region, age, sex, and year.

Methods For this analysis, we constructed burden-weighted dose-response relative risk curves across 22 health outcomes Correspondence to: to estimate the theoretical minimum risk exposure level (TMREL) and non-drinker equivalence (NDE), the consumption level at which the health risk is equivalent to that of a non-drinker, using disease rates from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2020 for 21 regions, including 204 countries and territories, by 5-year age group, sex, and year for individuals aged 15–95 years and older from 1990 to 2020. Based on the NDE, we quantified the population Seattle, WA 98195 USA consuming harmful amounts of alcohol.

Findings The burden-weighted relative risk curves for alcohol use varied by region and age. Among individuals aged 15–39 years in 2020, the TMREL varied between 0 (95% uncertainty interval 0–0) and 0.603 (0.400–1.00) standard drinks per day, and the NDE varied between 0.002 (0-0) and 1.75 (0.698-4.30) standard drinks per day. Among individuals aged 40 years and older, the burden-weighted relative risk curve was J-shaped for all regions, with a 2020 TMREL that ranged from 0.114 (0-0.403) to 1.87 (0.500-3.30) standard drinks per day and an NDE that ranged between 0.193 (0-0.900) and 6.94 (3.40-8.30) standard drinks per day. Among individuals consuming harmful amounts of alcohol in 2020, 59.1% (54.3–65.4) were aged 15–39 years and 76.9% (73.0–81.3) were male.

Interpretation There is strong evidence to support recommendations on alcohol consumption varying by age and location. Stronger interventions, particularly those tailored towards younger individuals, are needed to reduce the substantial global health loss attributable to alcohol.

Funding Bill & Melinda Gates Foundation.

Copyright © 2022 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 license.

35 ème journée d'Actualités Médicales Arrageoises

SAMEDI 21 janvier 2023

https://fmcarras.fr

QUELQUES MESSAGES CLEFS

Programme

08h30 : accueil des participants 09h00 : mot d'accueil de la présidente

09h10 : Urologie - Dr Grégory BOZZINI

09h40 : Gynécologie - Dr Charlène MASSIN

10h10 : Dermatologie - *Dr Freddy LENGRAND*

10h40 : Assemblée Générale de l'association de FMC

11h00 : Pause salée

12h30 : Gastro-entérologie - Dr Alexis BOUTHORS 13h00 : Radiologie - Dr Mélody AMOUYEL-CASTIER 13h30 : Séquence passion - François JONQUET

14h00 : Pause sucrée

15h00 : Cardiologie - *Dr Bruno VAQUETTE* 15h30 : Otorhinolaryngologie - Dr Vincent LOCHE **16h00 :** Endocrinologie - *Dr Bernard HENRIC*

Bonne journée !

Messages « "»»

- Les 4 fantastiques
- a ACD
- 1% 0
- I versus >300
- 30 0
- (1,87 verres d'alcool/j) 6